
Programming Models
& Runtime Systems

Breakout Report

MICS PI Meeting, June 27, 2002

Question 1

 What are the unfunded (and/or) under-
funded) basic research issues critical to
our ability to exploit next-generation
systems?

Programming Models for 1M
threads

• Most common programming languages are
based on linear execution of a single thread;
SPMD is an implicit array of such single threads.
It is hard to imagine this can bring us to 1M
threads (herding weasels). We need imaginative
research on programming models that are
based on different abstractions (no variables?,
no sequential execution?)

Locality Handling

• Current programming models and languages
have no good representation for locality;
languages focus on control and computation, not
on data location and data movement. What are
ways of providing different levels of abstraction
for data location, data movement, and locality?
What is the equivalent of procedural abstraction
that we have for computation?

Programmer Productivity

• Higher level programming languages
– Bring Mathematica/Matlab like environments

to HPC
– Languages that support very fast turnaround

on relatively small (but computationally heavy)
codes, to enable fast experimentation, or fast
time to solution.

– Support the ability to later refine it into tuned
code and to integrate it into larger systems

• Rapid prototyping for HPC

Fault Tolerance
• Should it surface to runtime and/or programming

model?
• What is the right combination of

hw/system/runtime/PL?
• How do we avoid global checkpoints? How do

we support high performance computing
reactive environments?

• Trustworthy computing in general: solutions to
software bugs, intruder attacks…

On the Fly Code Tuning

• Scientific codes run for long times. By
collecting data during execution one can
continuously tune the code. This requires
the right language/compiler/runtime
environment.
– Same idea applies a fortiori to libraries

Flexible Run-Time

• Suppose that the architecture provides
finer grain, more fluid “objects” (threads,
data objects), to facilitate migration, load
balancing, fault isolation. How do we build
PLs and runtime to take advantage of it?

Compiler Infrastructure
• Research in parallelizing compilers and compilation for

scientific computing is shrinking. Vendors are
disinvesting. Should we invest in common compiler
infrastructure? (e.g., front ends)

• How do we develop more modular compilation
approaches, to support plugin compiler components?

• Compiler toolkits to facilitate research sharing
• Locality aware code generation techniques
• Compilers that interact with user to choose optimizations,

and are actively used for performance analysis

Semantically Rich Interfaces

• Find ways of conveying more information at
library interfaces – e.g., semantic information
that can be provided by user, or deduced by
compiler, or performance information, or
common use information. This e.g. to enable
separate optimization of library invocations and,
in general, modular optimization.

Question 2

 What do you need most from the other
four CS research groups to enable your
future progress and enhance the
effectiveness of your work?

Lots of Help

• Viz/data: Large scale performance/behavior visualization
– Current tools scale badly
– Discrete data visualization as opposed to continuous fields
– Relate program, performance data, compiler decisions…

• Interoperability/portability – CCA ideas could be expanded
to provide semantic information across interfaces,
including performance information to support global
resource management
– Ways to express component semantics so as to support

composition
– CCA component ideas applied to infrastructure components as

well as application components: e.g. compilers, debuggers

Even More Help
• Performance: Real time performance measurements

that support feedback directed optimizations.
Hardware/system support for performance information
aggregation

• OS:
– An OS that does not require OS bypass: bypass is needed

because OS does not have right interface/function/performance.
Develop virtual machines with right mechanisms

– Hierarchical and dynamic resource management; ability to
dynamically allocate all system resources, to grow and shrink
jobs; interface for dialogue and negotiation between system and
runtime for resource allocation (including distributed systems);
two-level allocation, to job and within job for all resources;
application specific policies.

– Fast job startup/rundown
– Support for fault tolerance, e.g. virtualization and remapping of

all resources. Also support for fault tolerance by application.

Question 3

 What are the current gaps in the MICS CS
research portfolio related to peta-scale
computing? What new topic areas should
be added to the MICS portfolio?

Other things that would help but
aren’t being addressed

• Formal methods for verification, static and dynamic
checking; assertion languages, dynamic invariant
checking, introspection…

• Debugging (relates to formal methods)
• Compiler support for HPC
• Architecture research

– Funding for new programs or for tie ins with existing projects
(DARPA funding)

• Computing facilities for simulations (large scale), new
hardware testing facilities (small scale toy shop)

The End

